Tilting Disk Check Valves

0
135

Check valves are designed to prevent the reversal of flow in a piping system. These valves are activated by the flowing material in the pipeline. The pressure of the fluid passing through the system opens the valve, while any reversal of flow will close the valve. Closure is accomplished by the weight of the check mechanism, by back pressure, by a spring, or by a combination of these means. The general types of check valves are swing, tilting-disk, piston, butterfly, and stop.

Tilting Disk Check Valves

The tilting disk check valve, illustrated in Figure 23, is similar to the swing check valve. Like the swing check, the tilting disk type keeps fluid resistance and turbulence low because of its straight-through design.

Tilting Disk Check Valves

Figure 23 Operation of Tilting Disk Check Valve

Tilting disk check valves can be installed in horizontal lines and vertical lines having upward  flow. Some designs simply fit between two flange faces and provide a compact, lightweight installation, particularly in larger diameter valves.

The disk lifts off of the seat to open the valve. The airfoil design of the disk allows it to “float” on the flow. Disk stops built into the body position the disk for optimum flow characteristics. A large body cavity helps minimize flow restriction. As flow decreases, the disk starts closing and seals before reverse flow occurs. Back-pressure against the disk moves it across the soft seal into the metal seat for tight shutoff without slamming. If the reverse flow pressure is insufficient to cause a tight seal, the valve may be fitted with an external lever and weight.

Tilting Disk Check Valve Principle

Image Courtesy : flowserve

These valves are available with a soft seal ring, metal seat seal, or a metal-to-metal seal. The latter is recommended for high temperature operation. The soft seal rings are replaceable, but the valve must be removed from the line to make the replacement.

LEAVE A REPLY

Please enter your comment!
Please enter your name here